
 Digital Signal Processing with Dsch 3.5

 1

MICROWIND APPLICATION NOTE

www.microwind.net

Digital Signal Processing with Dsch 3.5

Etienne SICARD

Professor

INSA-Dgei, 135 Av de Rangueil

31077 Toulouse – France

www.microwind.org

email: Etienne.sicard@insa-toulouse.fr

Vinay SHARMA

Ni2designs

vinay@ni2designs.com

www.ni2designs.com

This document describes basic concepts on Digital Signal Processing (DSP), including coding of numbers, fixed point

principles, adder and multiplier structure, and a 4-bit implementation of a Multiply-Add-Accumulate Structure.

1. Coding of numbers

1.1 Hexadecimal, Integer, Binary

The correspondence between hexadecimal values, integer and binary values is reported in Table xxx.

Hexadecimal Integer Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111

Table 1: Hexadecimal vs. integer and binary values

Load “Dsp/UInt4bit.sch” as shown in Fig. xxx. The schematic diagram includes an hexadecimal keyboard. When

clicking “A”, the outputs “8” and “2” are on, leading to “1010” which is displayed as “A” with the hexadecimal digit

and 10 with the unsigned digit.

http://www.microwind.net/
http://www.microwind.org/
mailto:Etienne.sicard@insa-toulouse.fr

 Digital Signal Processing with Dsch 3.5

 2

MICROWIND APPLICATION NOTE

www.microwind.net

Figure 1 : A 4-bit hexadecimal input “A”, its binary, hexa and unsigned integer interpretation

(Dsp/UInt4bit.sch)

The hexadecimal display (digit.sym) can be reconfigured as hexadecimal, unsigned or signed integer by a double click

in the symbol.

The 4-bit display may

be configured here

Figure 2: configuring the display in various formats (digit.sym)

1.2 Unsigned Integer Format

A summary of integer formats is reported in table xxx. The signification of each bit is given in figure xxx. The

unsigned integer format is simply the series of power of 2.

Type Size (bit) Usual name Range

Unsigned integer 4 0..15

 8 Byte 0..255

 16 Word 0..65535

 32 Long word 0..4294967295

Table 2: Size and range of usual unsigned integer formats

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 3

MICROWIND APPLICATION NOTE

www.microwind.net

26 25 24 23 20

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

25 = 32

26 = 64

27 = 128

….

210 = 1024

215 = 32768

220 = 1048576

230 = 1073741824

231 = 2147483648

Unsigned integer, 8 bit

27 22 21

214 213 24 23 20

Unsigned integer, 16 bit

215 22 21

230 229 24 23 20

Unsigned integer, 32 bit

231 22 21 ..

23 20

Unsigned integer, 4 bit

22 21

Table 3: Unsigned integer format

As an example, the number 01101011 (0x6B) corresponds to 107, as detailed in equation xxx. The illustration of the

coding in binary, hexadecimal and unsigned integer format is proposed in the schematic diagram of Figure 4.

1071283264021232526201101011 (Equ. xxx)

Figure 3: coding of an 8-bit value in binary, hexadecimal and unsigned integer format (dsp/ UInt8bit.sch)

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 4

MICROWIND APPLICATION NOTE

www.microwind.net

1.3 Signed Integer Format

Signed integer 4 -8..+7

 8 Short integer -128..+127

 16 Integer -32768..+ 32767

 32 Long integer -2147483648..+ 2147483647

Table 4: Signed integer format

The main difference between “signed” and “unsigned” integer is the interpretation of the most significant bit (MSB).

The coding of the data works as for the unsigned integer, except that the left-most bit accounts for a negative number.

In 4-bit format, a 1 in the sign bit equals to adding -8; in 16-bit format, a 1 in the sign bit equals to adding -32768.

26 25 24 23 20

-2
3
= -8

-2
7
= -128

-2
15

= -32768

20 = 1

21 = 2

22 = 4

23 = 8

24 = 16

27 = 128

….

210 = 1024

215 = 32768

220 = 1048576

230 = 1073741824

231 = 2147483648

Signed integer, 8 bit format

-27 22 21

214 213 24 23 20

Signed integer, 16 bit format

-215 22 21

230 229 24 23 20

Signed integer, 32 bit format

-231 22 21 ..

-23 20

Signed integer, 4 bit

22 21

Figure 4: Signed integer format

Load “Dsp/Int4bit.sch” as shown in Fig. xxx. The schematic diagram includes a specific keyboard “kbdsigned.sym”

available in the symbol library. This specific keyboard encodes 4-bit signed integers into 4 logic outputs. As an

example, the 4-bit signed number 1111 is detailed in the equation below. The sign bit appears in the sum as -8, all the

other bit remaining positive.

1124822221111 0123 (Equ. xxx)

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 5

MICROWIND APPLICATION NOTE

www.microwind.net

Figure 5: the integer “-1” and its binary, hexadecimal, unsigned and signed interpretation.(dsp/Int4bit.sch)

1.4 Fixed Point Format

In DSP, the most important class of numbers is the real format. Low cost and low power digital signal processors use a

specific real format called “fixed point”. The key idea is to restrict the real numbers within the range [-1.0..+1.0] and

to use a simple arithmetic hardware that is compatible with integer hardware. A summary of fixed-point real formats is

reported in table xxx.

Type Size (bit) Resolution Range

Fixed point 4 0.125 -1.0..+1.0

 8 0.0078125 -1.0..+1.0

 16 0.00003 -1.0..+1.0

 32 0.00000000046 -1.0..+1.0

Table 5: Size and range of usual real formats

2-1 2-2 2-3 2-4 2-5 2-6 2-15 -2-0

2-0 = 1.0

2-1 = 0.5

2-2 = 0.25

2-3 = 0.125

2-4 = 0.0625

2-5 = 0.03125

2-6 = 0.015625

….

2-15 = 0.000030517578125

2-31 = 0.0000000004656

Fixed point, 16 bit

2-1 2-2 2-3 2-4 2-5 2-6 2-31 -2-0

Fixed point, 32 bit

2-30

2-1 2-2 2-3 2-4 2-5 2-6 2-7 -2-0

Fixed point, 8 bit

2-1 2-2 2-3 -2-0

Fixed point, 4 bit

Figure 6: Fixed point numbers in 16 and 32 bit format

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 6

MICROWIND APPLICATION NOTE

www.microwind.net

In the case of fixed point arithmetic, we read bits as fractions in negative power of 2 (Fig. xxx). When the left-most bit

is set to 1, it accounts for -1.0 in the addition (Equation xxx). The main limitation of this format is its limited range

from -1.0 to 1.0. Its main advantage is a hardware compatibility with integer circuits, leading to low power computing,

a particularly attractive feature for embedded electronics. Most digital signal processing of mobile phones work in

fixed point arithmetic, in 12-16 bit format. Two examples of encoding of 8-bit fixed-point numbers are reported in

Figs. 7 and 8.

78125.003125.025.05.052221201100100

Figure 7: Encoding of 0x64 (0110 0100) using dsp/FixedPointBasics.sch

-0.2187503125.025.05.00.15222120211100100

Figure 8: Encoding of 0xE4 (1110 0100) using dsp/FixedPointBasics.sch

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 7

MICROWIND APPLICATION NOTE

www.microwind.net

1.5 Fixed point source

A convenient symbol called “fixedpoint.sym” enables to produce an 8-bit fixed-point signal. The symbol may be

found in the symbol library, by a single click on the button “symbol list” in the palette, or through the command “File

> Insert User Symbol”. Double click the symbol and change the value, which should be within the validity range [-

1.0..+1.0].

Figure 9 : Generating an 8-bit data from a fixed-point real value using the symbol “fixedpoint.sym”

(dsp/fixedPointSource.sch)

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 8

MICROWIND APPLICATION NOTE

www.microwind.net

2. DSPs in very short

In very short, Digital Signal Processors are able to transform a digital signal x[n] into a signal y[n] (Fig. xxx). In

signed format, x[n] and y[n] range from -1.0 to 1.0. One of the most common transformations is filtering. For

example, a very-low complexity low-pass filter is described by its recurrence equation as follows [MentorDSP].

 2]-x[n0.391]-x[n0.61x[n]0.39y[n] Eq. 1

Low pass means that if x[n] is a low frequency sinusoidal wave, y[n] is close to x[n], in other word, the DSP let the

signal goes through without attenuation (Fig. 10-a). If x[n] is a high frequency sinusoidal wave, y[n] is an attenuated

version of x[n] (Fig. 10-b).

y[n]: close to x[n]

x[n] Digital

Signal

Processor

+1.0

-1.0

x[n] low frequency

+1.0

-1.0

y[n] attenuated

+1.0

-1.0

x[n] high frequency

+1.0

-1.0

y[n]

Figure 10: a DSP used as a low-pass filter

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 9

MICROWIND APPLICATION NOTE

www.microwind.net

Figure 11: time domain response of Equ.1 to a chirp signal x[n] (top), showing that y[n] bottom is unchanged

at low frequencies and attenuated at high frequencies [MentorDSP]

Using MentorDSP, we may see the effect of the filter (equ. 1) on a chirp signal that has a fixed amplitude of 1.0V and

varying frequency. It clearly appears that low frequencies are unchanged, while high frequencies are attenuated (Fig.

11).

A generic DSP structure that can implement and execute equation 1 is proposed below. It consists of memory

elements, multiply and add structures. The equation 1 concerns a second order (because of n-1) finite-Impulse-

response filter (because it only includes x[n-i] elements). If we identify variables, a0=0.39, a1=0.61, a2=0.39. We

highlight the basic structure consisting of an adder (yellow), a multiplier (red) and a memory (blue).

Second-order

Finite-Impulse

Response (FIR)

filter

y[n] = a0.x[n]+a1.x[n-1]+a2.x[n-2]

x[n]

memory

x a0

memory
x[n-1] x[n-2]

x a1 x a2

+ + y[n]

Multiply, add and

accumulate (MAC)

Figure 12: generic DSP structure implementing the filter, and illustration of the Multiply-Add-Accumulate

structure.

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 10

MICROWIND APPLICATION NOTE

www.microwind.net

3. MAC structure

The Multiply-Add-Accumulate (MAC) is the generic component of a DSP. In this paragraph, we illustrate the fixed-

point addition and fixed-point multiplication.

3.1 Fixed point addition

One of the most important circuits to be build the MAC structure (Fig. 12) is the adder, in signed format. The figure

below shows a 4-bit fixed point adder. It can be seen that the adder structure is exactly the same as for the 4-bit

unsigned integer addition. In other words, the fixed-point arithmetic’s consists in interpreting in different way

unsigned integer arithmetic, without any heavy structural change.

Figure 13 : Adding 0.5 and 0.125 using an adder hardware based on unsigned integers (dsp/fixedAdd4.sch)

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 11

MICROWIND APPLICATION NOTE

www.microwind.net

3.2 Fixed point multiplication

The next step is now to build a multiplier, the second important circuit of the MAC mathematical block. We reuse the

existing mul44 circuit, add the “fixedpoint.SYM” symbol instead of hexadecimal keyboard, and configure the display

in fixed mode. The result is shown Fog. 14. As an illustration, we configure the “A” data to 0.5 the B data to 0.25 and

observe the result. Note that the sign wires of A and B are disconnected and the sign bit of the display is stuck at 0. A

simple adder circuit (as for Fig.13) may be added to complete the multiplier function.

Figure 14: Multiplying 0.5 with 0.25 using an unsigned integer multiplier circuit (dsp/fixedMul44.sch.sch)

3.3 Memory

Any latch may be used to construct the “memory” function. In the implementation of Fig. 15, we simply instantiate 4

1-bit memory cells based on edge-trigged D-latches (see the chapter “Sequential circuits” of Microwind/Dsch user’s

manual [Microwind]). After a reset, a fall edge of the clock transfers the data to the display. Doing so, we transform

x[n] data into x[n-1].

http://www.microwind.net/

 Digital Signal Processing with Dsch 3.5

 12

MICROWIND APPLICATION NOTE

www.microwind.net

Figure 15: Accumulator based on 4 memory devices (D-reg) to store a 4-bit fixed point data on a fall edge of

the clock “MemClock” (dsp/ mem4.sch)

4. References

[MentorDSP] www.etienne-sicard.fr/mentordsp

[Microwind] The user’s manual and lite version are available at http://www.microwind.net/

http://www.microwind.net/
http://www.etienne-sicard.fr/mentordsp
http://www.microwind.net/

