~O
A very simple Microprocessor in DSCH [j GJ T/i/‘ (j

MICROWIND APPLICATION NOTE

A very simple microprocessor

(This application note has been written cooperation with Dr. Mahfuz Aziz, Senior Lecturer at the School of
Electrical and Information Engineering, University of South Australia)

This application note gives an introduction to microprocessor architecture. The goal of the project is to build
a 4-bit processor at logic level and then simulate step-by-step its internal structure.

Introduction

The Very-Simple-Microprocessor (VSM) is an updated version of the very popular SAP (Simple-As-Possible) computer
architecture proposed by Albert P. Malvino [1] in 1993 in his famous book “Digital Computer Electronics”. The VSM
computer introduces the basic concepts of microprocessor architecture in the simplest possible way. The VSM is very
primitive, but already quite complex, as shown in Figure-1.

Internal bus
Clock . —
Clear - Controller
_,‘: :—D Accumulator A
e Enable signals ﬂ
* Latch signals K :: Arithmetic Unit
Program Counter :> Accumulator B
Program memory Input register <::| External data
(8x8) > <

[Outputregister [External data

Figure-1: VSM basic architecture

www.microwind.net 1

http://www.microwind.net/

~©
A very simple Microprocessor in DSCH [J ()r 1 rI/‘ ()
(¥ _)]

MICROWIND APPLICATION NOTE

The function of each block is described in Table-1.

Block Block Size
Program The program counter counts from 0000 to 1111. It 4 bits
Counter monitors the address of the active instruction. Initially,

the program counter is set to 0000, so the microprocessor
starts with the instruction at the first memory location.
Program The program memory stores the program. Each program | 8x8 bits
Memory line has an 8bit format: the four most significant bits
represent the instruction itself, and the four least
significant bits represent the data attached to the
instruction, if necessary.

Accumulator A | The accumulator is a 4-bit register. It is used to store one |4 bits
of the operands for an arithmetic operation. It also stores
the intermediate results computed by the microprocessor.
Upon request (EnableA), the accumulator result is placed
on the internal bus.

Accumulator B | The accumulator B is also a 4-bit register. It is used to 4 bits
store the second operand for an arithmetic operation. For
addition this operand is added to accumulator A and for
substraction accumulator A is subtracted from this

operand.
Arithmetic The Arithmetic Unit performs the operation 4 bits
Unit S=A+B (Addition)

Or

S=B+~A+1 (Substraction)
Input Register | The Input Register gives the opportunity to transfer data |4 bits
from the outside world to the microprocessor.
Output The Output Register transfers the contents of the internal |4 bits
Register bus to the outside world. Usually, this instruction is
executed at the end of the program to display the final
result. The output register stores the output data on the
falling edge of the clock. The output register is usually
connected to a circuit which transfers or displays the
result to the user.

Table-1: The main blocks of the VSM architecture

The operation of the VSM is based on a bus called “internal bus” (IB). Each block shown in Figure-2 may
take control of the bus using a specific enable signal. For example, accumulator A uses an enable signal
called EnableA. When EnableA is high, the content of accumulator A is placed on the internal bus.

All the enable signals used in the VSM are shown in Figure-2. Table-2 summarizes their functions. The
control of these enable signals is provided by the Microlnstruction block, which plays a fundamental role in
the operation of the microprocessor.

www.microwind.net 2

http://www.microwind.net/

A very simple Microprocessor in DSCH

Internal bus

~0
HQJ 1No

MICROWIND APPLICATION NOTE

Clock]
Clear Microlnstruction " —
Accumulator A
Program Counter ﬁ
u :> Accumulator B
Program memory :>
u K—] Input register (— External data
m Instruction Register
|:> :> Output register :> External data
Figure-2: The controller generates “Enable” signals that allow one block to take the control of the bus
Enable Signal | Description
EnableA Authorizes A to take control of the bus.
EnableAlu Places the result of the arithmetic operation (ADD or
SUB) on the bus
Enablelnstr Places the data part of the instruction (four least
significant bits) on the bus.
Enableln Transfers the contents of the external input to the internal
bus.

Table-2: Four blocks may take the control of the internal bus, thanks to “Enable” signals

Instructions

Each instruction of the VSM is 8-bits long. However, only the four most significant bits represent the instruction itself.
Therefore, only 16 different instructions are possible.

No Operation (NOP=0000)

The No Operation instruction has no effect. It does not modify the content of any register. However, this instruction is
very interesting to understand how the basic clock controls work.

Addition (ADD=0001)

The content of accumulator A is added to the data given with the instruction as a parameter, and the result updates the
accumulator A. The addition is performed on four bits. The carry is ignored. For example, considering that A=2, the
instruction “ADD 3” corresponds to A=A+3, that is A=2+3. The final value of A is 5.

www.microwind.net

http://www.microwind.net/

~©
A very simple Microprocessor in DSCH [J ()r 1 rI/‘ ()
(¥ _)]

MICROWIND APPLICATION NOTE

Subtraction (SUB=0010)

The content of accumulator A is subtracted from the data given as a parameter, and the result updates the accumulator
A. The subtraction is performed on four bits. The carry is ignored.

Get Input (In=0100)

The content of the input port is transferred to accumulator A.

Give Output (OUT=0011)

The content of accumulator A is stored on the output port. The output port is a 4-bit register that memorizes the output
value and makes it available to external devices until its content is refreshed by a new “Give Output” instruction.

Load Accumulator A (LDA=0101)

This instruction loads the accumulator A with the value given as a parameter. For example, the instruction LDA 9
transfers the value 9 (1001 in binary format) to accumulator A.

Program Memory

The program memory contains up to 8 bytes, where we store the instructions to be executed. Each instruction is 8-bits
long. As shown in Figure-3 each instruction is split into two parts: the four most significant bits represent the instruction
code, while the four least significant bits represent the data. The program given in Table-3 loads accumulator A with the
value “2”, then adds “1”, and places the result in the output register.

- _J — J
Y v
Instruction Instruction
code (4 bits) data (4 bits)

Figure-3: Each instruction is split into 4-bit microinstruction code and 4-bit data fields

Mnemonic OpCode OpCode
(binary) (hexa)
LDA 2 0101|0010 0x52
ADD 1 0001 | 0001 Ox11
ouT 0011 | 0000 0x30
NOP 0000 | 0000 0x00

Table-3: A sample program for adding two 4-bit numbers

Figure-4 the shows the memory symbol along with the corresponding schematic diagram depicting the contents of all
the eight memory locations. . The memory has 8 registers, each register having 8 elementary memory cells. You can

www.microwind.net 4

http://www.microwind.net/

A very simple Microprocessor in DSCH

I

MICROWIND APPLICATION NOTE

~O
LOTNO

change the contents of the memory by clicking on the desired memory cells. When you save the schematic diagram,

you also save the memory contents. The memory symbol may be found in the basic symbol palette in DSCH.

TV\u"riteWﬁ’eadMem

wAddr2]
memdxs
widdrl
il
aind_| — T
winG_| | glouth
aling_| | gDouts
wPind_| L oDoutd
wina_| | glout3
wlinZ_| | glout?
alinl_| | gPoutl
wind_| | gloutd

Symbol n*1 mem3:x 5‘
Memary I et
addr b7 |bE |h5 |h4 |n3 |h2 |h1 |h|] | Genericname; |memBxd e Userstile [MemBxg
@ [0 1 o 1 1 o 1 0 Postion: |12 |45
@ o il 1 i 1 i] 1 Pinn® [In/Out [Mame [Delayins)[Fanout [Loading) =
@ o o 0 0 o 0 o 1 | 000 |0 0.000
@3— 0 0 U 0 0 0 0 0 2 | Addi 0.000 1} 0.000
3 | Addi] 0.000 1} 0.000
@4 |0 g oo g oo a 4 I DinF 0000 0 0.000
@5 |0 0 i} i} 0 i} i} i} 5 | Ding 0.000 1} 0.000
— 5 | Ding 0.000 o 0.000
@ [0 0o o o0 0 o o 0 =
7 | Dind 0.000 a 0.000
@ o 0o jo o 0 o 0 0 8 [Din3 (0000 0 0.000
a | Min? nonn - n non 2
Clear Al Setal [w Show Pin Hames [| Pause simulation o rize edge
[~ Show symbal tithe [~ | Pause simulation on fall edge
¥ Show name and propatties | Show switching delay
| Standard
Ll |
Ultea bighy speed
s £l o) High woltage
0K x Cancel |

Figure-4: Storing the program in the memory (VSM-mem8x8macro.sch)

Executing the instructions

Introducing the micro-instructions

Each VSM instruction is executed as a sequence of four internal micro-operations also called microinstructions.
Therefore the period of execution of each instruction can be divided into four time phases (T+-T4), each for one
microinstruction, as shown in Figure-5. The reader should note the distinction between the microprocessor instruction
itself such as “LDA 2" and the four internal microinstructions needed to complete the “LDA 2” instruction, called phase 1,
2, 3 and 4. The first two phases are called the fetch sequence. The corresponding microinstructions are independent of
the user’s instruction. The last two phases are called the execute sequence. Table-4 summarizes the microinstructions.

Ty T, T3 Ty Ta T,
A
Y b ___________
Fetch sequence Execute sequence New fetch
(2 phases) (2 phases) sequence

One instruction needs 4 clock phases
to be fetched and executed

New instruction

Figure-5: The execution of one VSM instruction involves the execution of four microinstructions in four
separate time phases

www.microwind.net

http://www.microwind.net/

—~©
A very simple Microprocessor in DSCH Ij 6) TJF/ (j

MICROWIND APPLICATION NOTE

Phase Name Description

Phase 1 Address state | The content of the desired memory location
is loaded into the instruction register.

Phase 2 Increment state | The program counter address is

incremented. The instruction register
provides the microinstruction decoder with
the instruction.

Phase 3 Execute step 1 | Depending on the instruction, the
microprocessor performs the first step of
the execution phase.

Phase 4 Execute step 2 | The microprocessor performs the second
step of the execution phase

Table-4: The execution of one instruction is based on four time phases

No Operation (NOP=0000)

The control flow for the ‘No Operation’ instruction is shown in Figure-6. The Fetch sequence corresponds to access to
the memory (ReadMem=1), and the loading of the corresponding instruction (Loadlnstr=1) during phase 1. During
phase 2, the stored instruction is sent to the microinstruction controller (Enablelnstr=1), while the counter is incremented
(ProgCount=1). As the ‘No Operation’ instruction does not affect any internal register, the execution phases (Phase 3
and phase 4) do not correspond to any specific activity.

Internal bus Internal bus

Microlnstruction Phase2 Microlnstruction |
Phasel —) Accumulator A Accumulator A
—I —I Feed with the
iL instruction iL
ReadMem
<: Arithmetic Unit ProgCount Arithmetic Unit
Program Counter ﬁ Program Counter ﬁ

Accumulator B

ﬁ Accumulator B

Program memory Program memory
(8x8) (8x8)

Input register <::| External data

<: Input register <:| External data

Instruction Register

Instruction Register

LoadInstr Enablelnstr

| Outputregister [Extemaldata

Output register ﬁ External data

www.microwind.net

http://www.microwind.net/

~©
A very simple Microprocessor in DSCH !j 6‘) TJFf ®

MICROWIND APPLICATION NOTE

| |
------ 4 1
I | | | |
I | | | i
I | \ { | i
1 ‘-1 —J3 71 L______ I
| | | | |
I | I |
| I I
ReadMem } I I
| | |
| !]
| | |
| | |
LoadInstr } I I
i i I i
I I |
Enablelnstr } I l
I I I
T 1
| I |
| | |
ProgCount } | |
[
| | |
I Phase; : Phase, } Phases : Phase, I
NG | AL | U
| ~" | v |

Fetch (Same for all

instructions) Execute NOP

Figure-6: Execution of the microinstructions corresponding to the NOP instruction

Addition (ADD=0001)

Addition is performed between the content of accumulator A and the 4-bit data given as a parameter of the ADD
instruction. Consequently, the addition is executed by storing the data in accumulator B (Phase 3), then asking the
arithmetic unit to produce the addition between accumulator A and accumulator B (Phase 4), and finally by transferring
the result back to accumulator A on the rising edge of the clock during phase 4, as illustrated in Figure-7.

Internal bus Internal bus
Phase 4
Phase 3 » Microlnstruction Microlnstruction
Accumulator A Accumulator A LoadA
I EnableAlu
Avithmetic Unit Increment Avithmetic Unit
AddSub=1
(ADD)

Program Counter

U

Program memory
(8x8)

Program Counter

ﬁ Accumulator B

Program memory
(8x8)

Accumulator B

Input register <:| External data ﬂ

Instruction Register

Input register <:| External data

Enablelnstr Instruction Register

Output register ﬁ External data Output register :> External data

www.microwind.net /

http://www.microwind.net/

(‘\‘©
A very simple Microprocessor in DSCH ,j 6) /Lf/ ()

MICROWIND APPLICATION NOTE

ReadMem

LoadlInstr

Enablelnstr Update A

ProgCount

LoadB

EnableAlu

LoadA

Phase; Phase, Phases Phase,

~— —~—

Fetch (Same for all

instructions) Execute ADD

Figure-7: Execution of the microinstructions corresponding to the ADD instruction

Subtraction (SUB=0010)

The execution phase of the subtraction instruction is identical to that of the addition instruction. The only
difference is that the “AddSub” signal is set to 0, which means “Subtract”.

Get Input (In=0100)

The content of the input port is transferred to accumulator A during phase 3 (Figure-8). There is nothing to
do in phase 4, when all registers remain inactive.

Internal bus Internal bus
Phase 4
I@—. Microlnstruction Microlnstruction
Accumulator A LoadA <:> Accumulator
Arithmetic Unit Increment K Aithmetic Unit
Program Counter ﬁ Program Counter ﬁ
u Accumulator B ﬂ |:> Accumulator B
Program memory Program memory
(8x8) (8x8)
u External data
Input register ﬁ K ": Input register K ‘:| External data
Enableln
Instruction Register Instruction Register
Output regist External data
utput register |:> Output register |:>
Phase 3 Phase 4

www.microwind.net 8

http://www.microwind.net/

A very simple Microprocessor in DSCH

ReadMem

LoadlInstr

Enablelnstr

ProgCount

Enableln

LoadA

~O
L@t C

MICROWIND APPLICATION NOTE

\
\
\
N Update A —
\ |
\ |
| |
—_—
\ | I
| | I
! Il —‘
| | ¢ I
\ | |
: : ——

Phase; " Phase, Phases ' Phasey '
— A

~ ~
Fetch (Same for all
Execute IN

instructions)

Figure-8: Execution of the microinstructions corresponding to the IN instruction

Give Output (OUT=0011)

The content of accumulator A is transferred to the output port via the internal bus during phase 3. The output
port memorizes the accumulator value and makes it available to external devices thanks to its four registers.
The processor is inactive during phase 4.

e

Microlnstruction

Internal bus

Accumulator A

Avrithmetic Unit

Program Counter

fr

Il

Accumulator B

Program memory
(8x8)

!

Input register

Instruction Register

Output register

Internal bus

Phase 4

EnableA

External data

Microlnstruction
<::> Accumulator
fncremenit <: Avithmetic Unit
Program Counter ﬁ
ﬁ |:“ pi Accumulator B
Program memory
(8x8)
ﬂ <: Input register <:| External data
Instruction Register
:> Output register :> External data
Phase 4

Figure-9: Execution of the microinstructions corresponding to the OUT instruction

Load Instruction (LDA=0101)

The load instruction transfers the 4-bit data given as a parameter of the LDA instruction to accumulator A.
For example, the instruction “LDA 9” transfers the value 9 (1001 in binary format) to accumulator A. In
Figure-10, the four least significant bits of the instruction register are placed on the internal bus and then
transferred to accumulator A. As a result, the updated value of A is 1001. There is no activity during phase

4.

www.microwind.net

http://www.microwind.net/

~O©
A very simple Microprocessor in DSCH ,j 6) /er (J

MICROWIND APPLICATION NOTE

Internal bus Internal bus

Phase 4
Phase3 | ' Microlnstruction Microlnstruction
Accumulator A LoadA ﬁ Accumulator
Avithmetic Unit Increment K= Avithmetic Unit
Program Counter ﬁ Program Counter ﬁ
iL Accumulator B @ |:> Accumulator B
Program memory Program memory
(8x8) (8x8)
Input register <:| External data ﬂ <: Input register <::| External data
Enablelnstr Instruction Register Instruction Register
Output register ﬁ External data :> Output register ::> External data
Phase 3 Phase 4

| |
I |
| I
ReadMem I |
i i
| |
LoadInstr | |
| i |
\ I |
Enablelnstr | | | Update A _:
\ | |
ProgCount } I :
| T 1
| | 4 I
LoadA } } !
| | | | |
Phase; Phase; Phases Phase,
- N
Y YT
Fetch (Same for all
Execute LOAD

instructions)

Figure-10: The microinstruction during phase 3 executes the load operation. During phase 4, the processor is
inactive.

Basic Block design

The structure of each sub-block of the microprocessor is presented in detail here.

Accumulator A

The accumulator is composed of four edge-sensitive D flip-flops as shown in Figure-11. The register output is available
through AluA0..AluA3 for the ADD and SUB operations. The content of A is transferred to the internal bus when
‘EnableA” is asserted. We use tri-state inverters to facilitate access to the internal bus. The “latchA” signal authorizes
the transfer of input data (here, a keyboard) to accumulator A at the falling edge of the main clock.

R EEEEEEEEEEE——
www.microwind.net 10

http://www.microwind.net/

A very simple Microprocessor in DSCH Flf

Yery Simple Microprocessor - Accumulators,

Etienne Sicard Dec 04

EJFEnabIQA

i

b

To Internal Bus

D
i
B

\

[Tl I=gl =2 Ima|

[] L]

B

A] J: | "9 o) "o
FSTdre@ﬂ ol ot dregd Ial FSTdregﬁ Tol o7 dreg2 nl
D“”}' % T_fﬁ i T T
To Sequencer
D atchg,
%Iu
painClock A%

\UA%
I

IuAT

Figure-11: Structure of the accumulator A showing its connections to the internal bus and the arithmetic unit
(Vsm-AccumulatorA.sch)

Accumulator B

Like accumulator A, the accumulator B is composed of four edge-sensitive D flip-flops as shown in Figure-
12. The register output is available through AluB0..AluB3 for the ADD and SUB operations. The “latchB”
signal authorizes the transfer of input data (here, a keyboard) to accumulator B at the falling edge of the
main clock.

Yery Simple Microprocessor - Accumulator B

T o o &

LAIUED SAIUET JLAIUEZ LAIUES

Etienne Sicard Dec 04

| = (oo |1

_ |wmfeo |+

rulco | =T

| — [T
N

khbd

| |3 a3 .D{ |43
dregs

Figure-12: Structure of the accumulator B showing its connections to the arithmetic unit (Vsm-
AccumulatorB).sch

www.microwind.net 11

http://www.microwind.net/

~©
A very simple Microprocessor in DSCH [J ()r 1 rI/‘ ()
(¥ _)]

MICROWIND APPLICATION NOTE

Add/subtract Block

The addition is based on the full-adder sub-circuit that has been described in Chapter 7 of the book “Basic CMOS cell
design” by the same authors [2]. The full-adder consists of a set of XOR gates for generating the “SUM” output and a
complex gate for generating the “Carry” output, as shown in Figure-13.

- :

19y

— T
% ol arry

I ——

s=(adbll{ceLalh))

Figure-13: The internal structure of the full-adder (Vsm-fullAdder.sch)

Adding two 4-bit numbers requires four cascaded full-adders as illustrated in Figure-14. The carry signal propagates
from the lower stage to the upper stage in order to perform the complete add operation.

To subtract two numbers (B-A in this case) using the same full-adders, we need to build two supplementary
things:

e A circuit that produces the 1’s complement of A
e A small circuit that sets the initial carry to 1.

One approach consists of using multiplexer circuits, which may be found in the symbol palette, advanced symbol menu,
sub-menu “Switches”. When “Sel” equals to 0, the input i0 is transferred to the output, otherwise, i1 is transferred to the
output. Consequently, “AddSub=0" corresponds to the transfer of A to the adder chain (Add operation), while
‘AddSub=1" corresponds to the transfer of ~A to the adder chain (Subtract operation).

www.microwind.net 12

http://www.microwind.net/

A very simple Microprocessor in DSCH

MICROWIND APPLICATION NOTE

EEnahleAlu % l—
arry
% Iﬂ] PE{\ E'_; - L.A_fU”Adder _Carr\,- _
- A » | .
Uigjbh| 1= \K - T
opifc|ir——=
B] BT,)
arry
o Wl -
L DE|Ff= o fullAdd
A[9]A BA—‘I— '1}‘; L L ‘.
13|01 = JD"ﬁ_EJ_uJL — = wRLIT] =
O e[ak=| [1
A 1
N T | fullAdder
il o [I arry
L 1) Ay
Wl -
.ID'“%EJJ_'
I i

aFK

— o
Ea
" 1
i1
[pAddd=ub l “ery Simple Microprocessar - Arithmetic unit

Etienne Sicard Dec 2004

Figure-14: Structure of the arithmetic unit which performs the ADD and SUB operations (Vsm-

ArithmeticUnit.sch)

At this point, it sounds very interesting to connect the accumulators and the arithmetic unit in order to
perform manually what the microprocessor will later do with its internal sequencer. The circuit made of the
accumulators A, B and the arithmetic unit is shown in Figure-15. The two keyboards serves as inputs A and
B, the displays are placed on the output bus and the arithmetic unit’s connections to the internal bus.

Trying to operate this simple circuit would be a very interesting introduction to the microprocessor’s
operation. Below is the set of actions we need to perform sequentially in order to add two numbers:

e De-active the main Reset. Initially the Reset pin is set to 0 (Default value at the start), which
corresponds to an active Reset. Both registers A and B are cleared (A=0, B=0). Nothing will work

until you set the button “~MainReset” to 1.

e Load the desired value on A. Click on a digit on the lower keyboard named “A”, for example 3.

Click “LatchA” and wait at least one complete cycle of the main clock. The accumulator A stores 3

at the falling edge of the clock.

e Load the desired value on B. Click on a digit on the upper keyboard named “B”, for example 2. Click

“LatchB” and wait at least one complete cycle of the main clock. The accumulator B stores 2 at the

falling edge of the clock. The arithmetic unit computes the sum A+B as “AddSub” is set by default

to 0, which corresponds to the ADD instruction. However the result is not displayed as “EnableAlu”

is 0.

e Set “EnableAlu” to 1 to display the result “5”, as shown in Figure-15.

www.microwind.net

13

http://www.microwind.net/

A very simple Microprocessor in DSCH p () 1T O

MICROWIND APPLICATION NOTE

ARy * e brithmeticd Init
wham b eom ilatorl 03 y WP&UBAM EI_.l_\Iy_3 """" !

Mrpefainttock gfeinClock) JAEE S ek
DCpkSchE dstohd sz G| 2
_C!earEI _.ﬂ.luEH JEII‘I

TIDIETT —e--o7 L N 0 e L N %arr‘f

1T A Le. &2 ddSue ELEEN
T[5[0 [T eeeeeeama]
O T peeene 7
B_ E -l |1
! f.l:l
[E—

“ery simple microprocessar - Testing the ADD and S8 operations

[A 3

i_ ______________________ J-dlainCIock _E|EIS * 5
stché sicha | 482 :
nabled Fnakles | B '
~MairReset .C!ear.ﬂ. _E|EID '
[TDIE[Fle-- < | g3 : J
A9 4G e --a% L2 N :
TS0 e | gl
AEE 0 e
[
a

Figure-15: The connection between accumulators A, B and the arithmetic unit to test the ADD and SUB
instructions (Vsm-RegARegBAIlu.SCH)

The input register

The input register is a simple set of 3-state buffers as shown in Figure-16. There is no need for D-registers as
the input will be directly transferred to accumulator A.

Yary Simple Microprocessor - Input register

Etienne Sicard Dec 04

DEnahleln
BO B Mz TMS
C|D|IE|F|—=
Al T|A|G—
Yl13|(h| 1=
0| l|c|df+——"""
Dataln

Figure-16: The input register (Vsm-InRegister.SCH)

www.microwind.net 14

http://www.microwind.net/

~O
A very simple Microprocessor in DSCH [j GJ T(i/‘ (j

MICROWIND APPLICATION NOTE

The output Register

The output register is composed of D-register cells as shown in Figure-17. On the positive edge of the clock, the data is
saved in the registers. It is very important that the data is stored on the positive edge of the clock during phase 3, and
not on the negative edge. The later would give rise to synchronization conflicts. Therefore, a NAND gate is used to
make the circuit sensitive to the rising edge of the main clock, as shown in Figure-18.

Yery Simple Microprocessor - Output register

Etienne Sicard Dec 04

co|l 1
Lo|—

rufcT [3= (1
Lo ™
g

Eﬁ

aiJ",'CIock

--

D:MQnReset

Figure-17: Internal structure of the output register (Vsm-OutRegister.SCH)

Data stored on the OUT
register at the rise edge of

the clock \
Main Clock i T

,,,,,,,,

Ta T2 T3 T4
e ~ A ~—~— —
OUT Fetch sequence OUT Execute sequence
(2 phases) (2 phases)

Figure-18: The output register must store the data at the rising edge of clock in phase 3

R EEEEEEEEEEE——
www.microwind.net 15

http://www.microwind.net/

~O

A very simple Microprocessor in DSCH p () 1T O
() J

MICROWIND APPLICATION NOTE

A manual microprocessor

In this paragraph, we propose to build a “manually-controlled” microprocessor which consists of accumulators A, B, and
the input and the output registers. The goal of the simulation reported in Figure-19 is to transfer the input information
(Dataln) to the output port (DataOut). To perform this transfer, we need to enable the input port (Enableln=1) and then
enable the output port (EnableOut=1). At the next rising edge of the main clock, the contents of the input keyboard (5 in
this case) will appear on the display connected to the output register. Several other transfers may be performed:

e Input register to accumulator A
e Input register to accumulator B
e Result of the addition of A and B to the output port

The arrow symbol (Symbol menu “Advanced”, symbol “Arrow”) is used to ease electrical connections for
the clock and reset signals. In the example shown in Figure 19, connections are made automatically among
all arrows having the same name. Double click the “CIk” arrow symbol in Figure-19 to access the arrow
name which identifies the electrical net. In the example shown in Figure-20, we built two different electrical
connections, one called “Clk” and the other called “Rst”. Notice that the electrical node names are not case
sensitive.

Wery simple microprocessor - Register A 8B Ala, In, Out 5
Etienne Sicard, Dec 04 . FTTT
e nabledlu nableu” B AlE g
tainCiock <! JB_AluZ '
stehB oatchB - | Bt e
_drasdlearB g JB_An y
CIOTETF I = X fel | g-arry
TI9TA Bl -e-- a2 hedsub
yla[a[1f=--a" posessssos o
AR i—}--ﬁP 0 pooooes HA-? : ___Jalai‘ﬁéé;
.El : : E-----:i-u : e 7;- J\dlainCIock
@ﬂalncmcgﬂk; 5fn e ; Iﬁnableom gnakleout
P H S 1 Nl o3
CEMarReset g P : 52
AINCICK B A ﬁju
atchd o-stcha B2 L] -445._
nabled JEpabIeA | B
st .Cllear.&. B0
CITIE Fle--a"3 Lefld3
A 9AIE|—=--a%° Ll .
Ol5(p|1—=--a" [1o I —, : :
__g® lga0 s m D it
A. Held=--"____ | o Jieinciock BT
jnableln .Epableln M=r]
|:|D|E F_‘____d:).atalnS 51
9145 |—= o ataln2 o50
I b j_‘____;)latalm
NNRE= g ataini
Drataln

Figure-19: A manually-controlled microprocessor (Vsm-RegARegBAlulnOut.SCH)

www.microwind.net 16

http://www.microwind.net/

A very simple Microprocessor in DSCH [j GJ /l

MICROWIND APPLICATION NOTE

Sytmbiol "9 Arrowy prope 51 ﬂ
Ao [Symbal p
Generic name: IAerW [User's title: ICIk
The arrow is used to ease connections
Arrow propertie: Pasition: In'15 N

The amow creates electiical connections between wires, P |\n.fDul Name | Delogirs] | Ea— ILDad[ns] |
based on the arow name
1 | 0.000 0 0.000
. Clock Clk Clk] Ariow name: Clk

D Pese Rst Rst 2

[~ Shaw Pin Names I Pause simulation on rise edge
¥ Shaw symbal title I~ Pause simulation on fal edge
utz [~ Shaw name and propetties [Show switching delay

| Standard
High speed
Wltrs bigh speed
High volkage

Show All Maone

x Cancel

Figure-20: Building arrow connections to ease the electrical wiring of the main signals (Vsm_arrow.SCH)

The Phase Generator

In order to transform the previous ‘manual’ microprocessor into a fully programmable microprocessor, we
need to build several circuits to generate the appropriate control signals. First, the phase counter must
produce the four phase signals Phase0 to Phase3 at the negative edge of the clock. The counter must be reset
by an active low “Clear” signal. The design of the phase counter is based on edge-sensitive latches and XOR

gates as shown in Figure-21.
hased hasel hase2 hase3d
i /\‘\

[Inl Dﬂc_Jl{ l_.nC_Jl{ i_.nc_ﬁ &
dreg? 3 dreg10 B dregd 5 dregd 4
: =1 : all =1 - ol ST -

IRSIT - '_-C-L

G H

T ahase Count

Figure-21: The phase counter structure (Vsm-RingCounter4.sch)

www.microwind.net 17

http://www.microwind.net/

A very simple Microprocessor in DSCH p () 1 Flf ()

Phase_Court

~Clear

Phasel

Fhasel

Phasze2

Phasze3

Figure-22: Simulation of the phase counter (Vsm-RingCounter4.sch)
When the “Clear” signal becomes inactive (logic high) the phases appear sequentially.

Program Counter O to 15

The program counter plays a very important role in the microprocessor as it supplies the main program
memory with the address of the active instruction (Figure-23). At the start, the program counter is 0. At the
end of each instruction the program counter is incremented in order to select the next instruction.

Internal bus

Microlnstruction
—>
<:> Accumulator A
<: Arithmetic Unit
u :> Accumulator B
Program memory
(8x8)
ﬁ — Input register) External data
Enablelnstr I:>

:> Output register :> External data

Figure-23: The program counter supplies the program memory with the address of the active instruction

One simple way to build a 0-to-15 counter is to use a cascaded chain of edge-sensitive D flip-flops, as shown in Figure-
24. The circuit is very simple, but works asynchronously. This means that due to propagation delays between stages,
some intermediate results appear on the display for a very short period of time. These glitches have no impact on the
microprocessor operation as the counter is incremented during phase 2 of the microinstruction sequence, and is only
exploited during phase 1 of the next instruction to load the instruction register.

www.microwind.net 18

http://www.microwind.net/

A very simple Microprocessor in DSCH [j GJ /l

MICROWIND APPLICATION NOTE

“ery Simple Microprocessar

Asynchronous clock divider used as a counter 0..15
Etienne Sicard Dec 04

Figure-24: The program counter at work. Counting is enabled only during phase 2, at the falling edge of the
main clock (Vsm-Counter16.SCH)

The Instruction Register

The instruction register stores the instruction being executed. The 8-bit information is split into two parts: the most
significant bits correspond to the instruction code, while the least significant bits are the data. The instruction code is
stored in the four D-registers situated at the bottom of Figure 25, in order to be available for the microinstruction
decoder. The data is stored in four separate D-register cells and can be made available on the internal bus. The
instruction register keeps a copy of the current instruction and releases the main memory, which can be accessed later
for both read or write operation.

- J J
YT Y
Instruction Instruction
code (4 bits) data (4 bits)

www.microwind.net 19

http://www.microwind.net/

~C
A very simple Microprocessor in DSCH p () T Flf ()
() J

MICROWIND APPLICATION NOTE

jnablelns’cheg] (=)

L=,

CID|E|[F =
B9 |A|C—e
MERE To Internal Bus
D;tal £l . .
Nennped o) b —uepr e
ST:Ireg_ﬁSl ST:lreg_aS) ST:lreg_ﬁSl STjreg_ﬁQ
qu_{ﬁ_l f — qu_q_‘_l TK_T_I
| |
CID|E|[F—m
A3 |AB—
U19(0| 71—
Inrétr'| 3 i_._]:
| H‘JP. I LA

pespron [{EsF (e foisf T@Tfyp

p-atogngiried l Ta Micrainstruction

1
Tolmetr2

Tolnstes

I:II?I'.DIn 0
anClock
Tl

Figure-25: The instruction register stores the contents of the memory and separates the code part (lower
registers) from the data part (upper registers) (Vsm-InstructionReg.SCH)

The Microlnstruction Controller

The microinstruction controller is the ‘heart’ of the microprocessor. It generates the most important signals for controlling
the operation of the processor, for example the ‘Enable’ and ‘latch’ signals. The design of the microinstruction
controller is shown in Figure-26. The input to the microinstruction controller is the instruction code from the instruction
register plus the phase information from the phase counter. The 4-input AND gates serve as instruction decoders. For
example, the instruction 0000 turns on the upper AND gate, which corresponds to the NOP instruction. Notice that
pahesO and phase1 are not connected to the instruction decoder. This is because the first two phases are not
dependent on the instruction itself. Then, depending on the type of instruction, the desired control signals are set to 1 if
active, or kept at 0 to be inactive.

www.microwind.net 20

http://www.microwind.net/

~©

A very simple Microprocessor in DSCH [J (1 r‘/ ()
LUJ L i

MICROWIND APPLICATION NOTE

[Laen Lt Bt
| 8 L L § L §

g
5
g
w1
i

Dﬂlqcuut IP.E?JHFIH {‘Lﬂ?ﬂllt {'?.ﬂal\ E}dﬁm I“EIaSPlI
hetrin 1 o -Il_!_. -Il—!_.- Il—!_.- Il—'_.- Il—!_.- Il—!_.- Il—!_. -Il—'_.-ll—!_.- Il—'_.- Il—!_'
ey] EY =Y Y Y) Y EEY)
e Ry o g E:E:;ggg G 5G]
SN o T -] (=8 ek Wl o ot Nl e fen Ao M
- Y i) EA=T T Y) ETET Y)
= D e e e e e B
. —_:D-Il_!_. -I'_!_.-I’_!_.-I’J_.-I'_!_.-I'J_.-I’J_. -Il_!_.-ll_'_.-ll_!_.-ll_!_'
: amui"‘m Il jr ;'7 j lg I_v-lr I_v-lr I;t I} jr jr
7 e = TR T O T Ol O Sl T P e A T
NI EREEREE e
:am“"-m _—:D ||1 Ijr n;.7 ||1 ng "_»'17 "_»'17 "1 hg "1 Ijr
-__/; proke -'_\X-IIJ_. -|l_'_.-|l_!_.-|l_!_.-|l_'_.-|l_'_.-|l_'_. -Il_!_.-ll_!_.-ll_!_.-ll_!_'
—I—L_/ II}’ “37 Ij Ij Ij Ilg |I1 Ilg Ilg Ij' “37
- 1ucmn'__:D-Il_'_. -I'_!_.-I'_'_.-I'J_.-I'J_.-I'J_.'I'J_. -Il—'_.-ll—'_.-ll—'_.-ll—'_'
2 2 2R R Y
._/; prate 'r\-ll—!_. -Il—'_.-ll—!_.-ll—'_.-ll—!_.-ll—'_.-ll—'_. -Il—'_.-ll—!_.-ll—!_.-ll—'_'
-t E Y Y) SN EEY Y
» T 1 —_:D-Il_'_. -Il—'_.-ll—!_.-ll—'_.-ll—!_.-ll—'_.-ll—'_. -Il—'_.-ll—!_.-ll—!_.-ll—'_'
s 2 LT Y I
-,_,J'; ek -r—_"_!—' -|l—'_.-|l—!_.-|l—'_.-|l—!_.-|l—'_.-u—'_. -u—'_.-u—!_.-u—!_.-n—'_'
L =] / “3, n} Ijr n; “37 Ij, Ij, “;.;7 “3, n;-» n}
- mmagm.-—_:D-ll"_. -Il—'_.-ll_'_.-ll—'_.-ll—'_.-ll_'_.-ll_'_. -Il_'_.-ll_'_.-ll_'_.-ll_'_'
maAREC) EY T T Y T) EYET)
'__f'f ok on I O =l T O O O e O e S el P s
[] ||1 ||1 ||1 ||1 ||1 ||1 ||1 "1 ||1 ||1 ||1

Figure-26: The control signals activated by the microinstruction controller during the first two time phases are
same for all instructions and depend on the instruction code during the two last phases

The Complete Microprocessor

It is time now to connect all the sub-circuits together and test the entire microprocessor. Each of these sub-circuits has
been embedded into a symbol where only the input and output pins appear. The complete circuit is shown in Figure-27.
We should keep in mind that this is only a “very simple” and very low complexity microprocessor. Before starting the
simulation, we must load the program into the memory. The program shown in Table-5 has been written into the
MICroprocessor's memory.

Mnemonic OpCode OpCode
(binary) (hexa)
LDA 1 0101|0001 0x51
ADD 2 0001|0010 0x12
ouT 0011 | 0000 0x30

Table-5: The code stored into the program memory

www.microwind.net 21

http://www.microwind.net/

A very simple Microprocessor in DSCH

MICROWIND APPLICATION NOTE

main clock

(2) Activate the

phases

(3) See the 4

(4) Follow the
current instruction

[CpainGlock

[EEzinGlear s RingCaunterd
I hase_CougPhased g2

fr=pe ahvClear g

(1) Release the main
Reset

VsmCounter1B6
£l ghainClock §PC3
wragEnableCourdPC2 ghddr2
wetaClearCountgPC1_gid

C0.

rboad01o

Very simple

[eEnableln .. senablein
LeFable Al s nablesly
febnabled. EnableA
LeAddSih . gtddsub

Oprocessor

minstny
elie-.avlainClock]gTpin
acim-atchinstrgloingty
Laliain
| aLoln:
i3,

ol ghlainCloc

E-sae.--watchA

nablpamEnabled

wEnableddy--

. FnableAly
3

Ve

(6) Monitor the
internal bus

mArithmeticUnit |m:|/

WsmOutRegiste#aut
py Nalnclucktﬁuﬁ,f i

sadCut---gloadOut | Outz /.
= anitainReselutl/

(8) Output result

eEnablefableln

memory

the processor

elE2. [CIOE[F =
1 [B[9[A[B]—=
SA0 5[] 1=
IHERS
By ataln
(5) Monitor the (7) Interact with

produced by the
microprocessor

R
VaminRag

.. gPatalnd
___.dDataln2
. gPatalnl
____gDatalnd

~

Dol @ fa

¥ Show wie state [~ Pin state

Figure-27: The microprocessor circuit ready for simulation (Vsm-Microprocessor.SCH)
Once simulation has started, there are several things to do in order to run the code:

At each active edge of the clock, observe the phase counter shifting from phase0 to phasel, phase2,

Starting in phase 2, the instruction is loaded into the microinstruction controller. The active

instruction appears as shown in (4), which corresponds here to “Load (0101)”.

e De-active the reset (1)
e Click on the main clock (2)
.
phase3 and back to phase0 (3).
.
.
e Also worth monitoring is the internal bus (6).
.
.

[anClock

EEtainClesr vemRingCounterd

1L o hase_CougPhased.._. o~
st gnvClear | gPhase? g7
LePhasel
LePhasell

WamMicrolnstruction

WamCounterlB

lahainClock g7C3 Vsmlnstn;gét
FragaEnableCoudP C2. gAddr2 a s
ﬂzg_.c]earCnunfUE At S5inngMainClocky il

\—‘..U_Cﬂ_ﬁd' daaelakatchinstrRglol

| Enables &
FefddSih g ddsub

7: E,D'alaW

sst_alearlnstiReg

“ery simple microprocessor

Etienne Sicard

Fefteadbden. Readhlem

nableA

,Dec 04

WamArithmeticlnit

You can monitor the memory contents and the active memory location (5).

If required by the program, you can enter data through the keyboard named Dataln (7)
If the “OUT” instruction is running the result should appear on the output display (8).

=4 gainClock]
Baagh--gatehA
Enablesabnabled
st aClBard
-l

E,D:alaﬂ

13
| B2

VamAccurnulatarB sEnablesy----aenabledlul JB_ALd
fjﬂ@c"m"mggﬂ"' ettem e aEINCIOCKL GAUER. oo oeeos e £ [dB.an2 ...
Fe-oadOut g gadOut . '
_____________ datch® [GAWRZ. 2 JB Al
ﬁ:ﬁgm’"'“ad‘"f“ | e dClearB JuE1 i A0
"""""""" __ 83] = 1 [aCarry
oadh g gada LB .
feEnableinstr Enablelnstr g :
LeEnableln - gnablein WemOutRegistediaut
FeEnableAly. dEnableal

e gMainClock] gOuE _f
oadOu—e-0ad0ut [ouz !
& afviainRes

Enablepanableln™ J83

CIDIE [F |=----&lataln3d LdB2:
0|3 |A|B|—e----oDataln2 1
U[gg|T=----Patalnt | B0 |
B [z [5}=----Lstaind

Dataln

Vsm\mReg\sﬁjei’

[¥ Showwiestate [~ Pinstate [~ Symbolstate [l

Figure-28: Final result of the addition of 1 and 2 using the program proposed in Table 6 (Vsm-
Microprocessor.SCH)

www.microwind.net

22

http://www.microwind.net/

A very simple Microprocessor in DSCH p () 1T O

MICROWIND APPLICATION NOTE

Memory Move

One important feature NOT handled by the very simple microprocessor is the memory move (MOVE). This instruction
transfers the contents of a memory location to accumulator A or vice versa. Why didn’t we build this functionality into the
first version of our processor? This is because the structure of the memory control and access must be deeply modified
and would require a significant amount of supplementary hardware.

Assuming that the MOVE operation transfers the contents of one memory location to A, we need to perform
the following sequence of operations: during phase 3, we need to have access to a new memory location,
whose address is not the one currently stored in the program counter. This means that a new type of access
must be provided in the processor from the internal bus to the memory, without altering the contents of the
instruction register. The differences between the two structures are displayed in Figure-29.

Internal bus Internal bus

Microlnstruction Phases | Microlnstruction
ﬁ Accumulator A :) Accumulator A
IL Program Counter iL
<: Arithmetic Unit <: Arithmetic Unit
(1) Mux
Program Counter
Address Mux
(2) Direct
ﬁ |:> Accumulator B path from Accumulator B
memory to
internal bus
Program memory Program memory’
(8x8) (8x8) ;
IL K= mputregistr ('~ External data (:d) dC’;Z?"”’ lL K= inputregister [(——) Extemnal data
control
Instruction Register Instruction Register
:> o External data External data
utput register |:> :“> Output register :“>

‘ Basic architecture : MOVE is impossible ‘ ‘ Improved architecture : MOVE available by a new type of memory access ‘

Figure-29: Modifying the microprocessor to handle the MOVE instruction

In practice, the MOVE instruction can be incorporated by adding the following:

e adirect path from memory to the internal bus (with its appropriate Enable control),
e a4-bit address bus from the instruction register to the memory, and
e amultiplexer for selecting a memory address either from the Program Counter or from the Instruction Register.

Physical Implementation

Description of the design flow

The VSM processor has been described and simulated at logic level using DSCH, and saved under the name
vsm-microprocessor.SCH. It can be converted automatically into layout using MICROWIND. The design
flow is detailed in Figure-30. First we create a VERILOG description of the VSM processor using the
command File —»Make Verilog File. The resulting text file vsm-microprocessor. TXT contains a
VERILOG description of the processor. This file can be compiled in MICROWIND using the command
Compile ->Compile Verilog File in order to automatically generate the layout of the processor.

www.microwind.net 23

http://www.microwind.net/

©
~
A very simple Microprocessor in DSCH [j GJ/[T 0O

MICROWIND APPLICATION NOTE

Th desioniches 12 bl
T e s 152 nodes

DSCH3 logic
editor and
logic

simulator <

i

Create the VSM schematic diagram

(vsm-microprocessor.SCH) Create the Verilog description

(vsm-microprocessor. TXT)

L

MICROWIND
layout editor
and analog
simulator

i

4

3 curens | owora] | o msckn s | g @k

Simulate the microprocessor at layout
level (vsm-microprocessor.MSK)

Import and compile the Verilog
description

Figure-30: Automatically generating the layout of the VSM processor from the logic circuit

VERILOG translation

In its basic version, the microprocessor includes 312 primitives. This relatively small number of devices is due to the fact
that the memory symbol is ignored during the translation to Verilog. This is because the memory macro-cell used in the
microprocessor design is not a real memory as it does not contain any real memory element such as flip-flops. The
warning generated by DSCH during the Verilog translation is shown in Figure-31. A partial view of the Verilog
description of the VSM (vsm-microprocessor.TXT) is shown in Figure-32.

' E Warning: memSxd symbols have been ignored in the Yerilog translation
i

Figure-31: Warning concerning the memory macro that has not been translated into a standard VERILOG
description

www.microwind.net 24

http://www.microwind.net/

A very simple Microprocessor in DSCH

~C

HGJ L0

MICROWIND APPLICATION NOTE

archy and Metlist

iaralchyl Metlist | Critic:al palhl

=loix]

~Informatioe

not #i44)

wire wlzg,
wire wil3g,
wire wil44,
wire wlbSzZ;
F/Warning: memSx4 [(MewSx8) ignored
inv_1 1 (w64, MainClear);
dreg #(17) dregl? 2 2 (wl4, w66, IBO, wo4,wos) ;

wi7,
w33,
widl,
waa,
w57,
wes,
WG,
ws1l,
w89,
wa7,
wids,
wils,
wizi,
wizg,
wis?,
wid5s,

/¢ DSCH Ver 3.0

* || Module name [8 char. max]
/¢ 03/01/2005 19:54:57 FEEEEETEE;QE?
/4 D:ihvDocuments and Settings'sicardiMes documents' Dsch3’vsm\Vsm-Microproc P

wilg,
wid,
w2,
ws0,
wha,
Wah,
w4,
wEZ,
woo,
wIS,

wE,wl3d, wld, wils;

wig,
w3k,
w3,
whl,
wsa,
wal,
wi5s,
wa3,
wel,
we9,
wing,
wil4,
wizz,
wiio,
wilis,
wlds,

w3G

wal

wE4

wio7?

wils,
wiz3,

wlil

w139,
w147,

wzi,

wZl,

LW3IT,
widd,
whE

w5,
w53,

FWEL,
waa,
WA,

weS,
Wi,

FWE5,
w92,
wi00, wl0ol, wi0Zz, wio3;
wing, wild,
wil7,wils,
wiZ5,wiz6,
wi3id, wis4,
wi4l,widz,
w143, wls0,

we3,

,wiloa,
wils,
wiz4,
,wi3z,
widn,
wid4s,

w22z,
wig,
wiG,
whd,
wha ,
w70,
wig,
Lot=1-08
wo4q,

w23}
w3ig;
w7
wEE;
wE3;
wil;
L=
wi7:
wos;

module VsmMicroprocessorv? | DatalnO,Datalnl,Datalnz,Dbatalnd,MainClock, Hai
IB1, IBO, Datalutd, Datalutl, batatutl, Dataltutd) ;
input Datalnl,Datalnl,latalnz,atalnd, MainClock, MainClear:
output IB3,IB2,IB1, IBO,Datadutl,atalut, Datafutl,Datadutd;
wire w3, w5, wE,w?,
wire wil6,
wire w32,
wire wd0,
wire w43,
wire wS6E,
wire w4,
wire w7,
wire w30,
wire w33,
wire w36,
wire wilo4,
wire wllz,
wire wilzOo,

will;
wiis:
wiz7;
wi35;
wi43;
wisl;

dreg #(17) dregls 3_3 (wl7?,we7,IB3, wed, wes)

il

¥ Add gate delay info
¥ Append simulation infomations

I~ Add labels & comments

The Verilog file has 303 lines
The design includes 312 symbolz
The circuit has 152 nodes

Extract circuit

| i v |

Figure-32: A partial view of the VERILOG description of the 4-bit microprocessor (vsm-microprocessor.TXT)

Creating the layout of the complete microprocessor

To generate a complete layout of the microprocessor, we need to design a cell-based 8x8 bit memory that works exactly
as the memory macro-cell. This can be done by constructing an array of 8x8 register cells based on very simple ring
inverters as shown in Figure-33. Data can be written to the memory cell via nmos N1 when the ‘Write’ control is high.

Data is read from the cell when the ‘Read’ control is high.

Wery Simple Microprocessar

Simple memory cell with write and read access

D‘Qead

M'

S

DWrit]

Figure-33: Design of a very simple memory cell based on two ring inverters (Vsm-memorycell.sch)

The design of an 8x8-bit memory array is shown in Fig. 4-34. There are eight memory cells in each row for storing the 8-
bits of an instruction. At any one time only one memory location (one row) can be accessed by asserting one of the
signals MemLocn0-MemLocn7. These 8 signals are generated by the 3-to-8 decoder shown in Fig. 4-35 using the 3-bit
address information (Addr2-Addr0). In Figure-34, either the Read or the Write signal is asserted for a Read or a Write
operation. The complete 8x8 memory including the address decoder is shown in Fig. 4-36.

www.microwind.net 25

http://www.microwind.net/

~©
A very simple Microprocessor in DSCH [J () 1 r‘/ ()
% NS W _

MICROWIND APPLICATION NOTE

EEE |
-
==
EEE
ii

stotatat oty [l e

ESl
Ed

===
EEE
===
S e

T T ST T
£ T T T TS T e T e T
ey | e e i oy
TR T ST T T T
ST ST T T
ST T ST T T

iRk

%

Figure-34: An 8x8-bit memory array (Vsm-Mem8x8Array.sch)

g AOr
QAD!D!H
E.umru

emLocn?

emLocnG

emLocns

emLocnd

emLocn3

emLocn?

emLocnl

emLocnd

PR AR A

Figure-35: A 3-to-8 decoder for memory addressing (Vsm-3to8Decoder.sch)

www.microwind.net 26

http://www.microwind.net/

©

A very simple Microprocessor in DSCH [J (OH1.T10
e I J _

MICROWIND APPLICATION NOTE

1 a
E‘ead n Dt
’E‘Vrie
CIDIE|F Warnhdem3udirray
Al3|A|B
Y19|b|1
D | E ﬂ Douth
Instr3 Douth
Instln |
Inlstr2 Doutd
[DE F Inlstr1 Doutd
ﬁ EI A B InlstrD Dout2
4 Ij h 1 DFtaS Dot
D | E ﬂ DientaQ Doutd
Din Datal
Ysm3toSDecoder DLtaD
|
DM?M Meml ocn? MlemLocn?
DM?dr1 Meml ocnb MlemLoan
Déﬂd&&ddrﬂ Meml ocns MlemLocnS
Meml ocnd MlemLocnfl
Meml ocha MemlLocn3
|
Merml och2 MlemLocn2
Merml ocnl MlemLocm
Mermlocn0 MemlLocnO

Figure-36: The complete 8x8 memory including address decoder (Vsm-Mem8x8.sch)

In order to generate a layout of the microprocessor we replace the memory macro (Vsm-Mem8x8Macro.sch) used in the
microprocessor of Figure-27 with the real 8x8 memory block presented in Figure-36. The new microprocessor
containing this real memory block is shown in Fig. 4-37. Note that the 3-bit address information can be supplied to the
memory (VsmMem8x8) either from the top keypad titled Addr or from the program counter using a set of three
multiplexers controlled by the WriteMem signal. During memory write operation (WriteMem is high) the address comes
from the top keypad. Therefore the user is able to specify the memory addresses where to store instructions. When the
processor executes instructions it reads the instructions from memory one by one according to the addresses supplied
from the program counter (WriteMem is low).

! MainClnck ks

E MainClear ot)) “ery simple microprocessor
“YemRinaCounter4 “amiicrolinstruction Ftirnnz Sicard, Dec 04

= Phase_caumphasea Phasa3— Readhemn Re’adMem T N Vz::ggﬂjécﬂza |E|
invClear | Phasel Phase? ProgCount ProgCount - MainClock— ALB3 B3 B A2
’ =
T Rat ClearD A Bl B0
/smCourter1d - ALED BO |y
= MainClock) Po3 In=trin2 LoadA, oadd 52 awisw
EnableCourt PC2 __Instrint Enablelnstr g pieinstr M e AR
Rt ClearCourterPCl Instrind Enablein Enahlein ___B'D A'2 WamOutResister
PCI Enabledld e viean —.ﬂ:1 Clk MainClock™] ot
Enables Enables, [an LoadOut Cut2
AccSub AddSub — | % iquainReseiOm
[[D|E F—IJ B3 Cut0
Bl3[AE— B2
NENE .\r"smAccumulato B
NRRE ™ MainClockT B3 B0
Load Latcha, B2 |
Addr ReadMem E 5 Enahled, 1B1
. ey vambtemexs me Cleara | B0
D\M’lteMam . rtesad “WaminstrcrigriRed a3 Aluss)
_Alddr In=t3 |ii)_hv!aincmck Toingtrs .4:2 Alus2)
C|DIE [F Aeldrt Inst2 | | paaiatohinstrRedpingtr2 A1 Alus
B{9[A|B Addr Inst1 nstr3 l A0 Aluag)
HHEML Insting Instr2 0 —
[INHE Instin2 MI—MM B3 e Enablzin_E3
Inst Instint Dtal Inztr B2 TTOIETF Dataing| 1B
Instind Disal EnableinstrRaE1 AEAE Datzinz| 151
TTOIETF Dind o ErdbiDctas B0 AN Dataint | 15O
Din2 Data2 Diatalnd
B3 lA B e d——
NERE Cint Datal
IRIRE Ding Datal Dataln
Dats Ret——GQeanst

Figured- 37: Complete microprocessor containing real memory (Vsm-ProcessorRealMem.SCH)

Follow the steps below for entering a program into the memory and then simulating the operation of the
processor with the loaded program.

www.microwind.net 27

http://www.microwind.net/

A very simple Microprocessor in DSCH [j GJ /l

MICROWIND APPLICATION NOTE

Program entry

Enter the program given in Table-6 into the processor memory as follows:

Start simulation in Dsch3.

The processor should be disabled by default. In any case it can be disabled by making sure
MainClear is active (low).

Assert the Memory Write signal by clicking the WriteMem button (high).

Enter address (0) using the top keypad titled Addr. The first memory location is now selected.
Enter the first instruction using the two bottom keypads titled Inst and Data.

Change addresses sequentially and enter the corresponding instructions.

No clocking is necessary for the program entry operation.

When all instructions are entered into the memory, click the WriteMem button in order to disable
the memory write operation.

Program execution

Enable the processor by deactivating the MainClear (high).

Cycle through various phases of processor operation by repeatedly clicking on the MainClock
button until all instructions are executed by the processor.

At each active edge of the clock observe the phase counter shifting from phase0 to phasel, then
phase2, then phase3, and back to phase0 for the next instruction.

You can observe the intermediate results in the top display (attached to the Arithmetic Unit) as each
instruction is read and executed by the processor.

When the OUT instruction is executed the final result appears on the output display (attached to the
Output Register).

Figure-38 shows the simulation results from execution of the program given in Table-6.

Sddr0.3)

Datal0.3]

Extin[0..3]

Inst{0..3]

MainClear

MainClock

iiritehdem

DataCut]0. 3] %] ! ! . i . : . . ! ; 1(03

...

0. 3]]](m Xm i]l[nu oni an i](na ED:JD }(Da E):DD

L T e T o TR T e

Figure-38: Simulation results for addition of 1 and 2 by the proceésor uéing the progrém givén in Table-6
More details about the implementation of the VSM microprocessor may be found on the web-site of
Microwind [3], and concern the interfacing of the microprocessor to the external world.

www.microwind.net 28

http://www.microwind.net/

—~©
A very simple Microprocessor in DSCH ,j 6) T(i/‘ (j

MICROWIND APPLICATION NOTE

Conclusion

In this chapter, the design of a very simple 4-bit microprocessor has been presented. The basic processor implements 5
instructions. This gives the foundations for building more complex processors with extended instruction set, more
sophisticated exchanges between the main memory and the accumulators, more powerful arithmetic unit, in order to
build a more attractive microprocessor.

References

[1] A. P. Malvino, J. A. Brown “Digital computer electronics”, Third Edition, Glenco-Macmillan, ISBN 0-
02-800594-5, 1992, USA
[2] E. Sicard, S. Ben Dhia “Basics of CMOS Cell design”, Tata McGraw Hill, 2005, IBSN 0-07-059933-5

www.microwind.net 29

http://www.microwind.net/

